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1 Introduction 

The research analysed and presented in this thesis is focused on hardware acceleration of 

algorithms used in real-time systems, especially algorithms that are used in real-time 

operating systems. Hardware architectures of such algorithms have higher impact on real-time 

systems than the acceleration of just specific applications belonging to the domain of real-

time systems. Performance of whole real-time systems can be improved by improving the 

performance of real-time operating systems they are using. Nevertheless, the worst-case 

timing, predictable behaviour and low response time are much more important than the 

average performance in real-time systems [1]. Hardware acceleration is even more beneficial 

approach for real-time systems because by applying hardware acceleration, asymptotic time 

complexity of the accelerated algorithm can be reduced. In some cases, the complexity can be 

reduced even down to a constant time, thus the latency of the chosen algorithm does not 

change with respect to its parameters and with respect to the amount of data the algorithm is 

processing. The constant time complexity is one of the most important aspects of algorithms 

used in real-time systems because it improves the determinism and predictability of the whole 

system [2]. 

There are already several existing solutions focused on hardware acceleration of 

algorithms in real-time operating systems. However, they have not been very successful in 

being adopted by companies in real world because of few reasons. The problems of existing 

solutions include mainly lack of flexibility, reusability and efficiency. The main purpose of 

the research conducted and presented in this work is to discover new solutions that will solve 

these problems by designing more robust, flexible and efficient solutions with constant 

response time. This could make hardware acceleration more successful and popular, 

especially for real-time systems. Thanks to this, new real-time systems based on such new 

solutions could be more deterministic and provide higher performance with lower response 

time for a reasonable cost. Additionally, such systems could be more intelligent and robust, 

either in terms of the number of tasks performed by the systems or in terms of how complex 

these tasks are. 
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2 Background 

A real-time system is a special class of embedded systems. Real-time systems are based on 

real-time paradigm, which defines the systems timing. The real-time paradigm is saying that 

the quality of real-time outputs depends not only on the correctness of this output but also on 

the time when is the output is produced. This means that producing an output of the real-time 

systems too late can cause the same issues as producing incorrect output [3]. 

Recently, there was highlighted a connection between real-time embedded systems and the 

physical environment by creating a new term called cyber-physical systems. These systems 

are specified as an integration of computations and physical processes [4]. This new term is 

highlighting a connection to physical parameters like time, energy and space. For such 

systems, one can expect new models representing physical environment. Cyber-physical 

systems can contain an embedded system (the part responsible for information processing) 

and physical environment [5, 6]. 

According to the consequences of failing to meet a deadline, real-time systems can be 

divided to the following two categories [3, 7]: 

 Soft real-time systems – occasional missing of deadlines is allowed, however with 

increasing the amount of occasions when a deadline is not met, the overall quality of 

the real-time system can be degraded. 

 Hard real-time systems – these systems are also called safety-critical systems, thus 

missing a single deadline can result in a failure of the whole system, which can cause 

serious problems. 

There are misconceptions for engineers when it comes to real-time computing paradigm. 

Some engineers believe that in order to meet the timing requirements of real-time systems, it 

is sufficient to just make the system fast enough. However, the system speed refers to the 

average performance of the system. In order to guarantee that the real-time system meets all 

deadlines in any cases, one must deal with the worst-case timing scenario. Thus, while the 

average execution time is important for conventional systems, the worst-case execution time 

is important for real-time systems. In order to be able to guarantee that all deadlines are met 

even with the worst-case timing, the whole real-time system must be adjusted to be more 

deterministic and predictable – application software, system software (operating system, 

firmware, drivers) and the last but not least, the hardware too [3, 8]. The most deterministic 

and predictable algorithms are such algorithms that have constant time complexity O(1). 

Constant time complexity means that the computation of the algorithm takes the same amount 

of time regardless of any parameter of the algorithm [9]. 

The current trend in real-time embedded systems is that these systems are becoming more 

complex, require higher performance and determinism. A development time is increasing 
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significantly as well. Therefore, it is necessary to contribute to creation of a new hardware 

platform of real-time systems that will be efficient, universal and deterministic. 

To guarantee determinism and completion of real-time tasks on time, and efficient and 

robust task scheduling is necessary. The biggest issue of the analysed scheduling algorithms is 

that either they are fast to execute but too simple for generation of efficient schedules, or they 

are complex enough for generation of optimum schedules but consume too much CPU time to 

schedule the tasks, which reduces the remaining time that can be used for execution of the 

scheduled tasks. Hardware acceleration is a possible solution that allows operating systems to 

use more complex, intelligent and effective scheduling algorithms, while the time complexity 

of their execution remains constant and reasonably low. It was also discovered that vast 

majority of the analysed task scheduling algorithms are focusing on one or few types of tasks 

only. However, systems in real world usually consist of various combinations of these task 

types and there is a trend of increasing complexity of real-time systems, including increasing 

the number of task types that are combined in the same system. Thus, more complex 

scheduling algorithms are becoming more beneficial and needed. Current real-time operating 

systems are using simple scheduling algorithms because since those can be implemented in 

software with constant time complexity. Due to an increasing need for adoption of more 

complex scheduling algorithms, an efficient and flexible hardware architecture of these 

algorithms is needed [3, 10, 11, 12, 13].  

Hardware-accelerated task schedulers need to use an architecture of data sorting for 

realization of ready queues. Each architecture has some advantages and disadvantages that 

also significantly affect the attributes of algorithms that are using such architecture. The major 

attributes are: resource cost (chip area for ASIC or LUTs consumption for FPGA), power 

consumption, determinism, critical path length / clock frequency, latency and throughput (in 

clock cycles). In order to design efficient hardware architecture of real-time task scheduler, an 

efficient and scalable min/max queue in terms of resource costs with constant critical path 

length, constant latency and constant throughput is needed. Therefore, if new hardware 

architecture of data sorting with better attributes is developed, it would increase the efficiency 

of the whole system that is based on such data sorting architecture as well. Among the 

analysed existing architectures, the Systolic Array architecture provides the best results so far. 

To design an efficient hardware architecture of real-time task scheduler, a new min/max 

queue architecture with constant critical path length, constant latency, constant throughput 

and minimum resource costs is needed. By reducing the resource costs and keeping the 

constant timing of the min/max queue, the maximum number of tasks present in real-time 

systems can be increased as long as a proper scheduler is adopted. The higher number of tasks 

allows to develop more complex real-time systems with additional functionality [10, 14, 15, 

16]. 



 

4 

 

3 Research Objectives 

Considering the background of real-time task scheduling and their hardware acceleration 

including the hardware architectures of data sorting that can be used for task scheduling, the 

following research objectives were defined. 

 

 Analysis, implementation and evaluation of existing hardware sorting architectures 

and their efficiency through comparison of their synthesis results. 

 Design of new hardware architecture for data sorting in real-time systems in order to 

minimize their logic/area cost and power consumption. 

 Design of new hardware architecture for task scheduling in multiple-core real-time 

systems in order to increase the number of tasks that meet their deadlines. 

 Extension of the task scheduling hardware for mixed-critical real-time systems in 

order to increase their flexibility and robustness. 

 Verification of designed architectures, comparison with existing solutions and 

evaluation of their benefits. 
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4 Proposed Efficient Min/Max Queue Architectures 

Since most of the scheduling algorithms suitable for real-time embedded systems need to 

use sorting in a form of min/max queues to find the most suitable task to be executed, this 

chapter is focused on design of new min/max queue architectures that are supposed to be 

more efficient in terms of resource costs and energy consumption than the existing 

architectures. Thus, this chapter is focused on fulfilling the research objective [RO-2]. 

4.1 Rocket Queue 

The Rocket Queue is a new min/max queue that contains items to be sorted. These items 

consist of two values only [A8, A10]: 

 ID – unique identification number (unique number for each item present). The only 
exception is 0 that is used for representation of empty items (i.e. no data). 

 DATA – the items should be sorted according to this value. If the queue is a min 
queue, then the output of the queue is the item with the lowest value of DATA. If the 
queue is a max queue, then the output of the queue is the item with the highest value 
of DATA. 

 

The Rocket Queue is a min/max queue in a form of an IP core that can be on-chip 

implemented in a form of a coprocessor. The coprocessor extends an instruction set of 

existing CPUs with its custom instructions of the coprocessor. The coprocessor implements 

these two instructions [A8, A10]: 

 INSERT – one new item is provided by the CPU, and this item is inserted into the 
min/max queue. The insertion is performed in such a manner that the items in the 
queue remain sorted so that the item with lowest/highest DATA remains to be the 
output of the min/max queue. 

 REMOVE – one existing item is removed from the queue depending on the ID that is 
provided alongside with this instruction. This is performed regardless of the position 
of the item that is being removed. The item is removed from the queue in such a 
manner that the items in the queue remain sorted so that the item with lowest/highest 
DATA remains to be the output of the min/max queue. 

 

One of the most resource consuming parts of the queues is a comparator. Comparison is 

performed in each cell of the Systolic Array architecture as well as in Shift Registers. By 

reducing the number of comparators used within the queue, significant portion of resources 

can be saved. Therefore, a new architecture called Rocket Queue was developed [A8, A10]. 

The Rocket Queue architecture is using less than one comparator per cell in average. This 

is accomplished by sharing one comparator within several cells. The sharing of comparators is 

achieved by using multiplexers. The architecture is organized in levels, where each level 

consists of several cells that share the same comparator. The first few levels are called 
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duplicating levels because each level below the duplicating level contains two times more 

cells. The duplication of cells per level stops at some point, which is defined by the number of 

duplicating levels. The levels below the group of duplicating levels are called merged levels 

and they keep the same number of cells per level for the rest of the architecture.  Figure 1 

depicts an example of the Rocket Queue architecture, where 3 duplicating levels and 11 

merged levels are used. Each node represents memory storage for one item, while the 

connections between the nodes represent possible movements of items between the nodes that 

can occur due to adding or removing of an item [A8, A10]. 

 

Figure 1: Example of Rocket Queue architecture [A8, A10] 

There are two disadvantages caused by merging comparators to one common comparator 

within each level. The first one is that the multiplexers mentioned above must be inserted so 

that the comparator can be shared by more cells. This increases resource costs and critical 

path length; therefore, the number of duplicating levels is limited. The second drawback is 

that the Rocket Queue architecture also needs to add a counter to each cell for decisions, in 

which direction to propagate the instructions that are adding new items to the queue (i.e. insert 

instructions). All instructions start at the first level that is located on the top of the queue and 

are propagated down at a speed of one level per clock cycle. Only one cell is actively used by 

the insert instruction in each line, which is controlled by the counters. The remove 

instructions are checking ID values of all cells within the current level [A8, A10]. 

The INSERT instructions are working in the following way. The instruction starts at the 

first level from the top and goes one level down per each clock cycle. Each time the INSERT 

instruction is executed in the corresponding level, the provided sort data is compared to the 

internal sort data of one selected cell in the level. Only one cell is selected for the instruction 

within a level. The selection of a cell within the level is realized with respect to the total 

amount of items below. Each cell situated in duplicating levels has two successors, the left 

one and the right one. If there are fewer items in the left successor than in the right successor, 

then the INSERT instruction continues to the left successor, otherwise it continues to the right 
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one. Each cell contains one counter that contains total number of items in the subtree 

represented by this cell. The subtree of a cell is set of all successors of the selected cell, 

including successors of the successors, and including the selected cell itself. Counters are 

immediately updated whenever an INSERT instruction is executed in particular level, even if 

the provided item is not yet inserted in this level [A8, A10]. 

An example of the INSERT instruction is shown in Figure 2. The instruction is inserting an 

item with DATA = 17. In the first step, the instruction is executed in level 1, thus the number 

17 is compared to the number 15. Since this example is a min queue and the new item has a 

higher sort value, the new item continues to the below level. The new item with the 

instruction continues to the right successor because it has fewer items in total (2 items, while 

the left successor has 3 items). The step 3 is again a comparison of the input sort value with 

the internal value in the cell. This time, the internal value is higher, so a replacement of items 

occurs. The replaced old item is removed from the cell and continues with the INSERT 

instruction further below. Step 4 is again a decision whether the instruction goes to the left 

successor or to the right successor. There are zero items to the left and one item to the right, 

thus the instruction continues to the left successor. Since this cell is free, the item is inserted 

there. Steps 1 and 2 are executed in the same clock cycle as well as steps 3 and 4 [A8, A10]. 

 

Figure 2: Example of Rocket Queue architecture [A8, A10] 

The REMOVE instructions are propagated to all cells within the same level 

simultaneously, thus IDs of all items located at the same level are compared to the provided 

ID in one clock cycle. Whenever any of these items has the same ID as the ID provided by the 

instruction (i.e. the item to be removed is identified), the item is removed from the 

corresponding cell by overwriting the contents of the cell registers with the item of a selected 

successor and the same operation is propagated to all items under the removed item (i.e. the 

items located in the same column are moved up) [A8, A10]. 
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4.2 Heap Queue 

The proposed Heap Queue architecture is layered into levels similar way as the Rocket 

Queue architecture. The difference is that while the Rocket Queue architecture consists of 

duplicating levels and merged levels, the levels used in the Heap Queue architecture are all 

duplicating ones. This means that each level is duplicating the number of items that can be 

stored within such level. For example, the first level has capacity of one item, the second level 

two items, the third level four items, the fourth level eight items, and the next level contains 

sixteen items [A14, A17]. 

Another difference between Rocket Queue and Heap Queue is that the Rocket Queue 

architecture is storing all data into registers, which is not true for the Heap Queue architecture. 

Items that are inserted into Heap Queue are stored in dual-port random access memories. 

Similarly, the numbers used for tree balancing are stored in RAM instead of registers too. The 

tree balancing is a feature that was developed for Rocket Queue in order to ensure that 

whenever a new item is inserted into the queue, the items are reorganized in such a manner 

that the tree of filled cells (i.e. the cells filled with an item) is balanced. The tree balancing 

feature is very common for binary trees in theoretical informatics too [A14, A17]. 

Figure 3 depicts the Heap Queue architecture layered into levels. Each level consists of one 

Control Unit (CU) and various number of Item Storage units (IS). One IS unit can be used for 

preserving of one item and one number that is used for the tree balancing feature. Each 

subsequent level contains two times more IS units than the previous one. The Control Units 

communicate with other Control Units from neighbouring levels. This communication is used 

for propagation of instruction from upper levels below and for items exchanges between 

levels. Since one Control Unit manages several IS units, the selection of IS unit is performed 

according to address provided by the Control Unit. The first three levels use registers for 

implementation of the IS units due to too small memory sizes. All the other levels are using 

dual-port RAM memories for implementation of IS units. The Control Unit of the first level 

serves as an interface of the whole queue to the external environment. It provides the first 

item (stored in the IS of level 1) as an output, which represents the item with the 

minimum/maximum sorting value among all items inserted into the queue [A14, A17]. 

One can also notice that the Control Unit performs a combination of several Sorting Nodes 

employed in heapsort algorithm. The reason is that each Sorting Unit would require to 

instantiate its own comparator, and since comparators are relatively resource expensive, the 

merging of several Sorting Units into one Control Unit saves significant portion of 

combinational logic within the queue [A14, A17]. 
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Figure 3: Heap Queue architecture example with 4 levels [A14, A17] 

Since the Heap Queue architecture is using RAM memory instead of registers, it is no 

longer possible to find and remove any item within the queue in a reasonable (and constant) 

time. The reason is that with registers, the Rocket Queue architecture is able to read all 

registers within the same level simultaneously in one clock cycle [A8, A10, A13]. However, 

with RAM memory it would be needed to sequentially read the memory one item per clock 

cycle. Therefore, the Heap Queue architecture allows removing only the first item (at the top 

of the queue) from the queue. Depending on the application of the min/max queue, this 

limitation may be acceptable or not. Thus, the Heap Queue architecture is proposed only for 

those applications, where only the item with the min/max sorting values are needed to be 

removed (e.g. scheduling of hard real-time tasks and Dijkstra’s algorithm). For other 

applications, the Rocket Queue architecture remains to be the optimum solution for hardware 

acceleration (e.g. Worst-fit memory allocation algorithm) [A14, A17]. 

The Heap Queue architecture is very similar to the DP RAM Heapsort architecture too [4]. 

However, the major difference between these two architectures is that the DP RAM Heapsort 

architecture lacks any tree balancing techniques, which can cause data overflows if items are 

inserted without simultaneous item removals. The Heap Queue has reused the tree balancing 

technique from the Rocket Queue architecture [A8, A10, A13]. Thus, the Heap Queue 

architecture represents a combination of Rocket Queue and DP RAM Heapsort architectures 

into a novel architecture that uses the best advantages from both former architectures [A14, 

A17]. 
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Since the DP RAM Heapsort architecture is performing both instructions POP and 

INSERT simultaneously [4], the Heap Queue architecture has adopted this feature too. It is 

provided in a form of a fourth instruction called POP_INSERT, which is identified by opcode 

11. This instruction can be used to further improve the performance of the application that 

using this min/max queue by reducing the number of instruction calls [A14, A17]. 

4.3 Usage of MIN/MAX Queue for Task Scheduling 

Task scheduling as the main part of operating systems is responsible for deciding which 

task (i.e. process or thread) is running and executed by CPU in what time. These decisions 

highly depend on the algorithm that is used for the scheduling. While ordinary operating 

systems usually schedule tasks according to their priorities, real-time systems should create 

the schedule according to the deadlines of the tasks, because it is critically important to meet 

the deadlines of all hard-RT tasks. One of the most common and popular algorithm used for 

scheduling of hard-RT tasks is the Earliest-Deadline First (EDF) algorithm, which simply 

sorts all tasks according to their deadlines so that the task with the earliest deadline (i.e. with 

the lowest deadline value) is selected for execution. Therefore, the min/max queues are 

essential for implementation of the EDF algorithm. By improving the parameters (e.g. 

resource cost, power consumption or latency) of min/max queue, an EDF scheduler 

implemented by the selected min/max queue is improved as well [A13]. 

Although the proposed Rocket Queue and Heap Queue architectures are suitable for 

implementation of EDF scheduler for hard real-time systems, these min/max queue 

architectures can be also used for any other real-time application that needs to use data sorting 

or min/max queues as a part of its algorithm. 

  



 

11 

 

5 Proposed Real-Time Task Schedulers 

Existing research papers are assuming that real-time systems consist of hard real-time tasks 

only and there is no mixing of task criticality needed (e.g. real-time and non-real-time tasks 

within the same scheduler). Thus, the existing solutions are forced to use hypervisors and split 

computing power to separate subsystems – operating systems managed by the hypervisor. 

However, such solutions are limiting, less efficient and harder to adopt. Therefore, new 

scheduler architectures that can handle various tasks of different criticality are proposed. This 

chapter is focused on fulfilling the research objective [RO-4]. 

5.1 EDF with Priority based FCFS 

The first proposed solution is based on a combination of EDF algorithm that is suitable for 

hard real-time tasks and priority based FCFS scheduling algorithm that is used for scheduling 

of non-real-time tasks. There is also a task killing feature available that is important for 

making the algorithm extensible by any software extensions for the scheduling (e.g. EDF can 

be extended to GED by software). The combination of EDF and priority based FCFS 

scheduling algorithms is performed in the following way. The implementation of EDF 

algorithm is sorting the tasks according to their deadline values. Non real-time tasks can be 

added to the EDF algorithm only when the priorities of these tasks are represented as 

deadlines of the tasks used in the EDF implementation. Thus, the same sorting (min/max) 

queue is used for and shared by both algorithms. In addition to that, in order to ensure that 

non-real-time tasks can never cause any deadline miss of any hard real-time task, the hard 

real-time tasks shall always have lower deadline value than the priority value of non real-time 

tasks. In order to fulfil such a requirement, the top 1024 deadline values are reserved for 

representation of priorities for the non-real-time tasks, while the rest of the possible deadline 

values remain used for hard real-time tasks [A2, A5, A6]. 

The proposed scheduler implements these two instructions [A5, A6]: 

 Task ADD – adding of a new task to the scheduler. The scheduler automatically 

updates the schedule and selects the new task to be executed. 

 Task KILL – removing of an existing task from the scheduler according to task ID. 

For sorting of the tasks Shift Registers was used. The amount of pipeline stages as well as 

many other parameters can be easily changed by setting a new value for corresponding 

constant in the code. Thus, the developed accelerators are designed to be as much 

parameterized as possible [A5, A6]. 

Depending on whether the task killing feature is required by the system, this scheduler can 

be directly implemented by using either Rocket Queue (with killing) or Heap Queue (without 

killing) architecture for sorting of the tasks [A13, A17]. 
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5.2 GED based Scheduler 

While EDF algorithm accepts all requests for adding a new task, the GED algorithm is 

using the Guarantee Routine for deciding whether to accept the request and add the new task 

to the Ready queue or to reject the request and discard the new task. By doing this, it is 

guaranteed that all deadlines of accepted tasks will be met in all cases. So far, there is no 

known hardware implementation of the GED algorithm, while the software implementation of 

GED is not practical due to the high amount of execution time that is required every time a 

new task is scheduled [A16]. 

The implementation of Guarantee Routine checks whether the new task is going to cause 

system overload. System overload is a state when not all scheduled tasks (i.e. tasks stored in 

the Ready queue) are guaranteed to meet their deadline. If the new task is going to get the 

system into “system overload” state, then the Guarantee Routine rejects the task. Otherwise 

the new task is accepted and added to the Ready Queue. This feature is especially useful for 

periodic soft real-time tasks, where occasional rejection of the task leads to higher average 

amount of successfully completed tasks on time. The problem of accepting all tasks all the 

time without checking whether the system is in “system overload” state is that a domino effect 

can occur [A16]. 

The Guarantee Routine feature is the only difference between the EDF and GED 

algorithms. Thus, by implementing the Guarantee Routine, one can extend an existing EDF 

based scheduler to GED based scheduler [A16]. 

The implementation of GED algorithm can be extended by support of non real-time tasks 

by adding the priority-based FCFS algorithm into the scheduler the same way as in case of the 

EDF algorithm, which was presented in section 6.1. Thanks to this, the proposed GED based 

scheduler can handle soft real-time tasks and non-real-time tasks, and any combinations of 

these tasks within the same scheduler [A16]. 

5.3 RED based Scheduler 

The RED algorithm is an extension of the GED algorithm. This algorithm is predicting 

whether any task is going to miss its deadline and selects the most appropriate task among the 

ready tasks to be temporarily placed into the Reject queue (i.e. rejected), which is depicted in 

Figure 4. In this way, it is guaranteed that all hard real-time tasks will meet their deadlines 

and also as many soft real-time tasks will meet their deadlines as possible. In the case when 

one of the scheduled tasks is completed sooner than expected, and there is enough time to 

reclaim and complete one of the rejected tasks, the algorithm uses reclaiming policy to return 

the rejected task back to the Ready queue containing the scheduled tasks [A15].  
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Prior to our research and as far as we know, no existing hardware implementation of task 

schedulers based either on GED or RED algorithm has been found and the main problem of 

the software implementations is that the scheduling consumes too much CPU time. 

Furthermore, the software implemented RED schedulers have variable duration of scheduling 

execution that depends on many various factors. Therefore, the software based RED 

schedulers are not deterministic and thus practically applicable to complex real-time systems 

[A15].  

 

 
Figure 4: EDF (a), GED (b) and RED (c) algorithms. [A15] 

 

The proposed RED based scheduler implements a special case of the RED algorithm, 

where one new constraint is added [A1]:  

                                          (1) 

While the RED algorithm itself does not define any policy for the task sacrificing to reduce 

the overload of the whole system, we also propose a method for selection of such tasks. This 

method selects the tasks according to 2 attributes, primary and secondary. The primary 

attribute is a type and priority of the task, where the task with the highest priority number is 

the best candidate to be sacrificed. The secondary attribute is considered in the case that there 

are multiple tasks with the highest priority. This attribute represents a contribution of the task 
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to overload of the system. Task with the highest primary attribute and then, the highest 

secondary attribute should be chosen to be sacrificed. The term “sacrifice” represents a 

removing of the task from the queue of the scheduled tasks and adding the task to the list of 

rejected tasks, called rejection list. The list of rejected tasks exists in a hope that some of the 

tasks being executed will be completed sooner than expected, and the processor will be able 

to complete some of the rejected tasks before the deadline [A1]. 

  

The top module of the proposed scheduler represents a coprocessor unit and it is displayed 

in Fig. 5. This module is composed of three submodules: Ready Queue, Control Unit and 

Reject Queue. The input of the top module is INSTR, which represents the coprocessor 

instruction provided from the CPU that is connected to the coprocessor. The output 

TASK_TO_RUN represents the task that is chosen by the scheduler to be executed by the 

CPU at the moment [A15].  

 
 

Figure 5: Top module of RED based scheduler [A15] 

 

5.4 EDF for Dual-Core CPUs 

The EDF based scheduler was consequently improved by adding a support for dual-core 

CPUs. With this extension, more powerful systems can be used as real-time systems. This 

allows finishing more tasks in the system before their deadlines are met. Thus, more time 
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consuming real-time systems can be developed. Two novel architectures of task scheduling 

coprocessor unit for dual-core real-time embedded systems are proposed. In dual-core 

systems, a conflict can occur whenever both CPU cores attempt to use the coprocessor at the 

same clock period. Therefore, our research was focused on conflict-free solutions [A3, A4, 

A5, A6]. 

The first architecture is based on semaphore approach that solves conflicts whenever they 

occur by selecting one core as a winner and locking the scheduler for the selected core, while 

the other core is a loser that is stalled in meantime. Each core is stalled once per 2 conflicts 

because the selection of the winner and loser is always switched. This ensures fairness of the 

approach in any cases [A4, A5]. 

The second architecture is based on simultaneous processing approach that eliminates the 

possibility of a conflict occurrence. This is achieved by implementation of more complex task 

cells and interfaces between them. As a result, both CPU cores can use the coprocessor unit 

simultaneously without interfering each other [A3, A4, A5, A6]. 

This new architecture is shown in Figure 6, where an example of killing Task 1 is 

presented. The CPU core 1 stops executing Task 1 and starts executing Task 3 (task with the 

earliest deadline among the tasks in the Ready tasks queue), while the CPU core 2 continues 

executing Task 2 without any change [A3, A5, A6]. 

CPU core 2

CPU core 1

Task 2

Task 1
Task 4 Task 3

CPU core 2

CPU core 1

Task 2

Task 3
Empty Task 4

Before killing 
Task 1

After killing 
Task 1

 

Figure 6: Running tasks out of the task queue (proper approach) – task killng [A3, A5, A6] 

The Running tasks module contains control logic that is responsible for decision whether 

to keep actual tasks in the cells or to perform any change. Task with the earliest deadline 

among the ready tasks is inserted to the Running tasks module whenever one of the running 

tasks is killed. Whenever a new task is being added to the system, a situation called 
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preemption can occur depending on the deadline of the new task and deadlines of the running 

tasks. If the new task has lower deadline than at least one of the running tasks, then this task 

should replace the running task with the highest deadline. The replaced task is called 

preempted task and execution of the preempted task should be paused. If preemption occurs 

then the Ready tasks queue receives the preempted task, otherwise the new task is inserted to 

the Ready tasks queue [A3, A5, A6]. 

The second example (illustrated in Figure 7) is a case when a new task (Task 4) is added to 

the system. The new task has lower deadline than the deadlines of the running tasks, and Task 

1 has higher deadline than Task 2 and therefore preemption occurs. In the Running tasks 

queue, Task 1 is replaced by the new task - Task 4 and inserted into the beginning of the 

Ready tasks queue. In this way, we keep both CPU cores executing tasks with the earliest two 

deadlines while eliminating all unnecessary occurrences of task switching [A3, A5, A6]. 

CPU core 2

CPU core 1

Task 2

Task 1
Empty Task 3

CPU core 2

CPU core 1

Task 2

Task 4
Task 3 Task 1

Before adding 
Task 4

After adding 
Task 4

 

Figure 7: Running tasks out of the task queue (proper approach) – task adding [A3, A5, A6] 

Simultaneity Conflict Solving 

Nevertheless, another problem can also occur. What if both CPU cores decide to add a new 

task or kill an existing task at the exact same time (clock cycle)? Let us call such a situation a 

conflict. All previous approaches assumed that there is always one request at a time. This 

assumption is totally correct in single-core systems. However, the opposite is true in multi-

core systems. There can be very low probability of such a situation. For example, if each CPU 

core uses custom instructions of the coprocessor 1% of the time (one instruction of the 

scheduling per 100 instructions) then the probability of a conflict occurrence is 0.01%. So, the 

conflict would occur very rarely but still it has to be considered. We propose two approaches 

to solve this problem and discuss their advantages and disadvantages [A3-A6]. 
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The first proposed approach is simpler, and it is called the semaphore approach. If a 

conflict occurs (a situation when both CPU cores want to use the coprocessor at the same 

time), it is resolved dynamically by semaphore module. This module is responsible for 

choosing, which CPU core will be granted an immediate access to use the coprocessor. The 

second core will use the coprocessor after the instruction of the first CPU core is finished and 

thus, this second core needs to be stalled. The architecture proposed to implement the 

semaphore approach for handling of 2 CPU cores is depicted in Figure 8 [A3, A5, A6]. 

This approach can be also extended to support more than just 2 CPU cores, which is 

described in 5.5 EDF for Quad-Core CPUS. 

 

Figure 8: Semaphore approach for dual-core systems [A3, A5, A6] 

The semaphore module consists mainly of multiplexers for selecting the instruction. In 

addition to that, there is only one D Flip-Flop added for remembering whether the last 

conflict-winning core was CPU core 1 or CPU core 2. In the case of a conflict occurrence, the 

multiplexer is also controlled by the output of this DFF. The best-case execution time is one 

clock cycle. However, we have to keep on mind that the main target is hard real-time systems, 

where the worst-case execution time should be taken in consideration instead of the best case 

or average execution time. The worst-case execution time of the semaphore approach is two 

clock cycles because in the worst-case scenario, a conflict occurs every clock cycle. The 

biggest disadvantage of the semaphore approach is the fact that the best-case execution time 

and the worst-case execution time differ, which means that such a coprocessor and also the 

whole real-time system would be less deterministic and predictable [A3, A5, A6]. 

The second proposed approach is no doubt much more complicated solution, and it is 

called the simultaneous processing approach. This approach works with modified 

Running_tasks and Ready_tasks modules that are able to accept and execute two instructions 
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of the scheduling at the same clock cycle, without any conflicts. In order to achieve such 

functionality, we need to extend the interface of the modules, internal logic of the task cells in 

the Ready_tasks and internal logic of the Running_tasks component. The global architecture 

of the simultaneous processing approach is shown in Figure 9 [A3, A5, A6]. 

 

Figure 9: Simultaneous processing approach for dual-core systems [A3, A5, A6] 

Both Ready_tasks and Running_tasks modules are receiving two instructions 

simultaneously. For one instruction input, there are two possible types of instructions: 

task_add or task_kill. When having two instruction inputs, there are four possible 

combinations of instruction types: task_add & task_add, task_add & task_kill, task_kill & 

task_add or task_kill & task_kill [A3, A5, A6]. 

5.5 EDF for Quad-Core CPUs 

The top module of the quad-core version is consisting of the same four components as the 

dual-core version, which are [A9, A12]: 

 Ready Tasks 

 Running Tasks 

 Semaphore 

 Control Unit 

The organization of these four blocks within the top module for dual-core version of the 

scheduler is described by a block diagram displayed in Figure 10. The instructions coming 

from CPU cores are at first being processed by the Semaphore unit that is responsible for 

deciding, which CPU core has granted access to add or remove a task at the moment, and 

which CPU core has to wait for two clock cycles. The instruction of the winning CPU core is 
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being provided to the next component - Control Unit. Control unit generates specific control 

signals for another component (Running Tasks) according to the received instruction. The 

Running Tasks component is handling the tasks that are supposed to be executed at the 

moment. Communication with the Ready Tasks component is performed only through the 

Running Tasks component, which sends to the Ready Tasks component those tasks that are 

pre-empted, and which is reading the task with the lowest deadline value among the ready 

tasks (from the Ready Tasks). The control signals from Control Unit are also driven to the 

Ready Tasks only indirectly through the Running Tasks component [A9, A12]. 

 
Figure 10: Block diagram of top level module for dual-core version of scheduler [A12] 

The top module of the quad-core version of the scheduler is very similar to the previous 

dual-core version. The only difference is that the interfaces of the top module, Semaphore 

component and Running Tasks component are extended for communication with four CPU 

cores. The block diagram for the quad-core version of the scheduler is displayed in Figure 11 

[A9, A12]. 
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Figure 11: Block diagram of top level module for quad-core version of scheduler [A9, A12] 

6 Achieved Synthesis Results 

6.1 FPGA Synthesis Results for Min/Max Queues 

Fig. 12 shows the scalability of Systolic Array, Rocket Queue and Heap Queue 

architectures with increasing queue capacity that represents the maximum number of items 

that can be stored in the queue. 
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Figure 12: FPGA synthesis results of Heap Queue, Rocket Queue and Systolic Array [A14] 

Fig. 13 shows the scalability of Systolic Array, Rocket Queue and Heap Queue 

architectures with increasing bit width of sorted data values. One can notice that the new 

proposed architectures are scaling better than Systolic Array. One can also notice that the 

Heap Queue architecture is mentioned in results two times: for ALMs consumption and for 

static RAM consumption. The RAM consumption is valid only for the Heap Queue 

architecture since the other architectures do not use any RAM bits at all [A14]. 
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Figure 13: FPGA synthesis results of Heap Queue, Rocket Queue and Systolic Array [A14] 

6.2 ASIC Synthesis Results for Min/Max Queues 

An ASIC synthesis of the Heap Queue, Rocket Queue and Systolic Array architectures 

were performed in order to compare the resource costs of these three architectures. The ASIC 

technology used for synthesis is 28 nm high-performance mobile version of TSMC. A clock 

frequency of 1 GHz and power supply of 0.9 V was used. Several tables were created, each 

table comparing the efficiency with respect to a different parameter that is being changed. 

Figure 14 compares chip area costs and Fig. 15 shows a power consumption comparison 

[A17]. 
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Figure 14: Chip area costs of Rocket Queue (RQ), Heap Queue (HQ) and Systolic Array (SA) 

for various queue capacities [A17] 

 

Figure 15: Power consumptions of Rocket Queue (RQ), Heap Queue (HQ) and Systolic Array 

(SA) for various queue capacities [A17] 
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6.3 Comparison of 1-Core, 2-Core and 4-Core EDF Schedulers 

 A synthesis of HW-accelerated EDF-based task scheduling for single-core, dual-core and 

quad-core real-time systems was performed in order to compare the area chip costs of all three 

versions of the scheduler. Shift registers architecture was used for implementation of the 

ready queue within the EDF scheduler. Figure 16 shows a relative increase of costs for the 

dual-core and quad-core versions of the scheduler in comparison to the single-core version, 

depending on the maximum number of tasks in the scheduler [A12]. 

 

Figure 16: Relative resource cost increase when changing single-core EDF scheduler to dual-

core or quad-core version [A9, A12] 

The overall comparison of the proposed schedulers, based on the achieved synthesis 

results, is presented in Table I. One can conclude that it is definitely worth of using 4 CPU 

cores and the scheduler designed for quad-core CPUs. The resource cost of supporting 4 CPU 

cores is relatively low in comparison to the performance improvement caused by increased 

throughput of the system [A12]. 

TABLE I.  OVERALL COMPARISON OF THE SCHEDULERS [A12] 

Criterion 
Scheduler Version 

single-core dual-core quad-core 

Chip Area Costs 100 % 100 – 115 % 101 – 127 % 

Best Case 
Execution Time 

2 clock cycles 2 clock cycles 2 clock cycles 

Worst Case 
Execution Time 

2 clock cycles 4 clock cycles 8 clock cycles 

CPU Stalls 0 0 to 1 0 to 3 

CPU Cores 1 2 4 

CPU Throughput 100% 200% 400% 
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6.4 Comparison of EDF, GED and RED Schedulers 

Figure 17 shows a comparison of how fast ALM consumption grows with increasing 

number of task cells in all three schedulers, EDF-based, GED-based and RED-based. 

 

Figure 17: Comparison of ALM consumptions of EDF, GED and RED schedulers for various 

queue capacities [A15] 

Fig. 18 shows a comparison of how fast ALM consumption grows with the increasing bit 

width of both time values (i.e. deadline values and execution time values) all three schedulers 

- EDF-based, GED-based and RED-based [A15]. 
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Figure 18: Comparison of ALM consumptions of EDF, GED and RED schedulers for various 

bit widths of time values [A15] 

The overall comparison of the EDF-based, GED-based and the novel RED-based 

schedulers is presented in Table II. The support of all three major types of tasks in one 

scheduler is provided at a cost of increased resource consumption (i.e. LUTs for FPGAs or 

chip area for ASICs) [A15]. 

TABLE II.  COMPARISON OF EDF, GED AND RED SCHEDULERS [A15] 

Criterion 
Selected Scheduler 

EDF-based GED-based RED-based 

ALMs E 1.94 - 2.24 x E 2.98 - 4.07 x E 

Registers R 1.75 – 2.42 x R 3.02 – 5.75 x R 

Best Case 
Execution Time 

2 clock cycles 2 clock cycles 2 clock cycles 

Worst Case 
Execution Time 

2 clock cycles 2 clock cycles 2 clock cycles 

Hard RT tasks yes no yes 

Soft RT tasks no yes yes 

Non-RT tasks yes yes yes 
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7 Summary of Contributions 

This section summarizes the direct and indirect contributions of the architectures that were 

proposed in this PhD thesis. The summary of contributions is shown in Figure 19. All the new 

hardware architectures proposed in this thesis are listed in the first column. Proposed 

Solutions. Direct contributions and Impacts on RTOS of the proposed hardware solutions on 

the improvement of real-time operating systems are presented within the second column. 

These improvements have subsequent impact on the overall real-time system that would use 

such improved RTOS. Thus, the indirect contributions of the proposed architectures are listed 

in column 3. System impacts. 

 

Figure 19: Summary of contributions of research carried out within this PhD thesis 
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Main contributions and features of the proposed solutions are: 

 The new proposed min/max queue architectures, Rocket Queue and Heap Queue, 

consume less resources (i.e. chip area for ASIC and LUT count for FPGA) than the 

existing architecture called Systolic Array. Therefore, a task scheduler that realizes 

EDF algorithm and uses either Rocket Queue or Heap Queue architecture has 

reduced resource costs and power consumption as well. Subsequently, the reduced 

chip area or LUTs consumption can have impact on the total costs of the real-time 

system that uses one of the proposed min/max queue architectures instead of 

Systolic Array. Alternatively, one can decide to rather increase the queue capacity 

in order to support more tasks in the system and keep the resource costs 

approximately the same as before. 

 The proposed extensions of EDF schedulers that support an execution of two tasks 

(i.e. dual-core version) or four tasks (i.e. quad-core version) in parallel, have direct 

impact on the performance of the CPU executing the real-time tasks. The enhanced 

performance of the CPU increases the number of tasks that finish their execution 

before the deadline is met. Alternatively, tasks with longer execution time can be 

used instead. 

 The proposed EDF-based scheduler that supports task killing can schedule non-RT 

tasks in addition to the hard RT. Therefore, more complex RT systems containing 

both types of tasks can be developed relatively easily because there is no need to 

assign priorities to the hard RT tasks, only to non-RT tasks. This scheduler allows 

to create new and more complex real-time systems. 

 The GED-based scheduler developed within our research is the first hardware 

accelerated scheduler that realizes GED algorithm (according to our best 

knowledge). Thanks to the features of the GED algorithm, soft RT tasks are 

scheduled optimally. The GED scheduler is extended to support non-RT tasks as 

well. Thus, real-time systems consisting of soft RT tasks and non-RT tasks are 

suitable for usage of the GED scheduler. 

 The last proposed solution, the RED scheduler, is realizing the most complex 

scheduling algorithm called RED. This solution provides the combination of hard 

RT tasks, soft RT tasks and non-RT tasks within one operating system easily and 

effectively. Such a combination allows to create the most complex real-time 

systems with mixed task criticality and task types. The proposed RED-based 

scheduler also creates the optimum schedule regardless of CPU utilization or CPU 

load, which minimizes the occurrence of deadline misses. Thus, more tasks and 

tasks with longer execution time can be used.  
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8 Conclusion 

In this work, analysis of real-time systems and their attributes was performed at first. Real-

time operating systems and their most frequently used algorithms were analysed too. Existing 

hardware architectures for data sorting and existing hardware accelerated task schedulers for 

real-time systems were analysed as well. According to the knowledge obtained from the 

performed state-of-the-art analysis, a motivation for development of improved architectures 

for real-time task scheduling was identified. Based on this motivation, research objectives for 

this thesis were specified. The research objectives were focused on design, verification and 

evaluation of new architectures that shall improve real-time task scheduling. 

Two new sorting architectures for min/max queues were proposed in order to minimize 

resource costs and power consumption of hardware accelerated EDF-based schedulers that 

create the optimum schedule for systems consisting of hard real-time tasks only. To create a 

new hardware accelerated task scheduler that supports mixed criticality systems, EDF 

scheduler with task killing, GED scheduler and RED scheduler were developed. Each of these 

scheduler architectures is suitable for a different system (application), depending on types of 

tasks that are present in the system. Additionally, two approaches for extension of the task 

schedulers to support dual-core and quad-core CPUs were proposed and designed too. When 

using more CPU cores, significantly more tasks or more computationally intensive tasks can 

be executed in the real-time system without deadline misses. 

The correctness of all the proposed solutions was intensively verified in UVM-based 

simulations, which is considered to be the current state of the art for verification of digital 

circuits designed for real-time systems, such as systems within aerospace industry. In this 

way, it was proven that the designed architectures meet their high-level algorithmic 

specifications. Since only existing algorithms were implemented within the architectures, it is 

secured that these specifications are correct too. Additionally, all the proposed solutions were 

also proved to be synthesizable, since synthesis into ASIC and/or FPGA technologies was 

performed as well. Last but not least, the synthesized designs were also tested in FPGA using 

functional BIST technique and a static timing analysis was performed as well. 

The synthesis results of the proposed solutions were evaluated and compared to other 

comparable results, within the same implementation technology and same parameterization of 

the synthesized circuit. Based on the achieved results and the comparison to the results of 

alternative solutions, a summary of contributions achieved within this PhD thesis was 

described, underlining the main advantages and benefits of the proposed solutions and their 

impact on the real-time system potentially using such solutions. 
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9 Záver  

V rámci tejto práce bola najprv vykonaná analýza systémov reálneho času a ich atribútov. 

Taktiež boli analyzované operačné systémy reálneho času a ich najčastejšie používané 

algoritmy. Následne boli analyzované existujúce hardvérové architektúry pre zoraďovanie dát 

a existujúce hardvérovo-akcelerované plánovače úloh pre systémy reálneho času. Podľa 

vedomostí získaných z vykonanej analýzy súčasného stavu bola identifikovaná motivácia pre 

vývoj vylepšených architektúr pre plánovanie úloh reálneho času. Na základe tejto motivácie 

boli špecifikované ciele dizertačnej práce. Tieto výskumné ciele boli zamerané na návrh, 

verifikáciu a vyhodnotenie nových architektúr, ktoré majú vylepšiť plánovanie úloh reálneho 

času. 

Boli navrhované dve nové zoraďovacie architektúry pre min/max rady za účelom 

minimalizovania nákladov na výpočtové zdroje a spotrebu energie pre realizáciu hardvérovo 

akcelerovaných plánovačov, ktoré sú založené na EDF algoritme a vytvárajú tak optimálny 

plán pre systémy pozostávajúce z hard RT úloh. Na vytvorenie nového hardvérovo-

akcelerovaného plánovača, ktorý podporuje systémy zmiešanej kritickosti, boli vyvinuté 

plánovače typu EDF so zabíjaním úloh, GED plánovač a RED plánovač. Každý z týchto 

plánovačov je vhodný pre iný systém (aplikáciu) v závislosti na type úloh, ktoré sa 

nachádzajú v takomto systéme. K tomu boli navrhnuté dva prístupy pre rozšírenie plánovačov 

úloh, aby podporovali dvojjadrové a štvorjadrové procesory. Použitím viac CPU jadier je 

možné vykonať výrazne viac úloh alebo výpočtovo náročnejšie úlohy v stanovených 

časových ohraničeniach. 

Korektnosť všetkých navrhovaných riešení bola intenzívne overená v UVM simuláciách, 

čo je považované za súčasný štandard pre verifikáciu číslicových obvodov navrhnutých pre 

systémy reálneho času, ako napríklad systémy v rámci leteckého a vesmírneho priemyslu. 

Týmto spôsobom bolo dokázané, že navrhnuté architektúry spĺňajú svoje vysokoúrovňové 

algoritmické špecifikácie. Keďže iba existujúce algoritmy boli implementované v rámci 

týchto architektúr, je zabezpečené, že tieto špecifikácie sú taktiež korektné. Navyše, všetky 

navrhované riešenia boli tiež syntetizované do ASIC a/alebo FPGA technológie. Bola 

vykonaná statická časová analýza a návrhy syntetizované do FPGA boli tiež otestované 

v FPGA použitím techniky funkcionálneho BIST-u. 

Výsledky syntéz navrhovaných riešení boli vyhodnotené a porovnané s ostatnými 

porovnateľnými výsledkami v rámci rovnakej implementačnej technológie a rovnakej 

parametrizácie syntetizovaného obvodu. Na základe dosiahnutých výsledkov a ich porovnania 

s alternatívnymi riešeniami bolo opísané zhrnutie dosiahnutých prínosov v rámci tejto 

dizertačnej práce. Boli podčiarknuté hlavné výhody a benefity navrhovaných riešení a ich 

vplyv na systémy reálneho času, ktoré potenciálne použijú takéto riešenia. 
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